Sauerstoff ist überall auf der Erde vorhanden und ohne dieses wichtige Molekül wäre Leben auf der Erde nicht möglich. Wird das Sauerstoffmolekül (O2) energetisch angeregt, entsteht der sogenannte Singulett Sauerstoff (kurz: 1O2, englisch: singlet oxygen). Singulett Sauerstoff kann sehr effizient durch den photodynamischen Mechanismus erzeugt werden.

Singulett Sauerstoff mit antimikrobieller Wirkung

Dieser hochreaktive Singulett Sauerstoff wird seit über 20 Jahren in der Medizin zur Behandlung von Tumoren und degenerativen Erkrankungen routinemäßig eingesetzt. Zeitgleich wurde der antimikrobielle Einsatz von Singulett Sauerstoff entwickelt. Viren, Bakterien und Pilze werden durch diesen hochreaktiven Sauerstoff schnell und effizient zerstört. Eine Resistenzentwicklung, wie sie bei Antibiotika und konventionellen Bioziden zu beobachten ist, tritt bei Singulett Sauerstoff nicht auf.

Nachweisbarkeit der Wirkung von Singulett Sauerstoff

Es gibt derzeit mindestens 34 wissenschaftliche Studien, die beweisen, dass Singulett Sauerstoff auch verschiedenste Viren effizient zerstören kann. Weiter gibt es mehr als Hundert wissenschaftliche Studien, die beweisen, dass Singulett Sauerstoff verschiedenste pathogene Pilze effizient abtöten kann

Diese Studien wurden mit wissenschaftlich standardisierten Methoden durchgeführt und in peer-reviewed Fachjournals publiziert.

Die wissenschaftlichen Studien zeigen, dass Singulett Sauerstoff…

  • die Zerstörung der Viren bzw. die Abtötung der Bakterien und Pilze mittels Peroxidation von Lipiden und Proteinen bewirkt
  • damit behüllte und unbehüllte Viren effizient zerstört
  • häufig auftretende Viren wie Influenzaviren, Herpesviren, Noroviren und HIV zerstört
  • hochpathogene Viren wie Ebolaviren und SARS Coronaviren zerstört
  • sich als sehr wirksam gegen den weit verbreiteten Hefepilz C. albicans zeigt
  • Grampositive und Gramnegative Bakterien gleichermaßen inaktiviert
  • Bakterien unabhängig von ihrer Antibiotika-Resistenz inaktiviert
  • insbesondere Bakterien der ESKAPE Gruppe inaktiviert
  • auch gegen Antimykotika-resistente Pilze wirkt

Keime, deren Inaktivierung durch Singulett Sauerstoff mittels wissenschaftlicher Studien belegt ist

Viren

  • bacteriophages
  • baculovirus
  • bovine enterovirus
  • chikungunya virus
  • Coronavirus MERS-CoV
  • Coronavirus SARS-CoV
  • coxsackievirus
  • Crimean-Congo haemorrhagic fever virus
  • dengue virus
  • Ebolavirus
  • feline calicivirus
  • herpes simplex virus
  • hepatitis B
  • hepatitis C
  • human adenovirus
  • human cytomegalovirus
  • human immunodeficiency virus
  • human norovirus
  • infectious hematopoietic necrosis virus
  • influenza virus
  • mayaro virus
  • mouse polyomavirus
  • murine norovirus
  • Newcastle diseasevirus
  • Nipah virus
  • Sindbis virus
  • vesicular stomatitis virus
  • Zika virus

Bakterien

  • Acinetobacter baumannii
  • Actinomyces naeslundii
  • Actinomyces viscosus
  • Aggregatibacter actinomycetemcomitans
  • Bacillus atrophaeus
  • Bacillus subtilis
  • Bacteroides thetaiotaomicron
  • Campylobacter jejuni
  • Clostridium ditficile
  • Deinococcus radiodurans
  • Enterobacter cloacae
  • Enterococcus faecalis
  • Enterococcus faeclum
  • Escherichia coll
  • Fusobacterium nucleatum
  • Helicobacter pylori
  • Hemophilus influenzae
  • Klebsiella oxytoca
  • Klebslella pneumonlae
  • Listeria monocytogenes
  • MDR
  • MRSA
  • Mycobacterium bovis
  • Mycobacterium chelonae
  • Porphyromonas gingivalis
  • Propionibacterium acnes
  • Proteus mirabilis
  • Pseudomonas aeruginosa
  • Salmonella enterica serovar Typhimurium
  • Serratia marcescens
  • Staphylococcus aureus
  • Staphylococcus epidermidis
  • Streptococcus bovis
  • Streptococcus mutans
  • Streptococcus pneumoniae
  • Vibrio parahaemolyticus
  • Vibrio vulnificus
  • VRE

Pilze

  • Aspergillus flavues
  • Aspergillus fumigatus
  • Aspergillus niger
  • Candida albicans
  • Candida auris
  • Candida dubliniensis
  • Candida krusei
  • Candida parapsilosis
  • Cladosporium cladosporioides
  • Colletotrichum graminicola
  • Cryptococcus neoformans
  • Fusarium oxysporum
  • Malassezia spp.
  • Penicillium chrysogenum
  • Penicillium purpurgenum
  • Scopulariopsis brevicaulis
  • Saccharomyces cerevisiae
  • Trichophyton rubrum

Wissenschaftliche Studien zur antiviralen Wirkung von Singulett Sauerstoff

  1. Wiehe, A., J.M. O’Brien, and M.O. Senge, Trends and targets in antiviral phototherapy. Photochemical & Photobiological Sciences, 2019. 18(11): p. 2565-2612.
  2. Hollmann, A., et al., Singlet oxygen effects on lipid membranes: implications for the mechanism of action of broad-spectrum viral fusion inhibitors. Biochemical Journal, 2014. 459: p. 161-170.
  3. Korneev, D., et al., Ultrastructural Aspects of Photodynamic Inactivation of Highly Pathogenic Avian H5N8 Influenza Virus. Viruses, 2019. 11(10).
  4. Majiya, H., et al., Photodynamic inactivation of non-enveloped RNA viruses. J Photochem Photobiol B, 2018. 189: p. 87-94.
  5. Teles, A.V., et al., Photodynamic inactivation of Bovine herpesvirus type 1 (BoHV-1) by porphyrins. J Gen Virol, 2018. 99(9): p. 1301-1306.
  6. Cruz-Oliveira, C., et al., Mechanisms of Vesicular Stomatitis Virus Inactivation by Protoporphyrin IX, Zinc-Protoporphyrin IX, and Mesoporphyrin IX. Antimicrob Agents Chemother, 2017. 61(6).
  7. Balmer, B.F., et al., Inhibition of an Aquatic Rhabdovirus Demonstrates Promise of a Broad-Spectrum Antiviral for Use in Aquaculture. Journal of Virology, 2017. 91(4).
  8. Carpenter, B.L., et al., Antiviral, Antifungal and Antibacterial Activities of a BODIPY-Based Photosensitizer. Molecules, 2015. 20(6): p. 10604-10621.
  9. Ke, M.R., et al., Photodynamic inactivation of bacteria and viruses using two monosubstituted zinc(II) phthalocyanines. European Journal of Medicinal Chemistry, 2014. 84: p. 278-283.
  10. Verhaelen, K., et al., Wipes Coated with a Singlet-Oxygen-Producing Photosensitizer Are Effective against Human Influenza Virus but Not against Norovirus. Applied and Environmental Microbiology, 2014. 80(14): p. 4391-4397.
  11. Vigant, F., et al., The Rigid Amphipathic Fusion Inhibitor dUY11 Acts through Photosensitization of Viruses. Journal of Virology, 2014. 88(3): p. 1849-1853.
  12. Rosado-Lausell, S.L., et al., Roles of singlet oxygen and triplet excited state of dissolved organic matter formed by different organic matters in bacteriophage MS2 inactivation. Water Research, 2013. 47(14): p. 4869-4879.
  13. Vigant, F., et al., A Mechanistic Paradigm for Broad-Spectrum Antivirals that Target Virus-Cell Fusion. Plos Pathogens, 2013. 9(4).
  14. Costa, L., et al., Involvement of type I and type II mechanisms on the photoinactivation of non-enveloped DNA and RNA bacteriophages. J Photochem Photobiol B, 2013. 120: p. 10-6.
  15. Lhotakova, Y., et al., Virucidal nanofiber textiles based on photosensitized production of singlet oxygen. PLoS One, 2012. 7(11): p. e49226.
  16. Rule Wigginton, K., et al., Oxidation of virus proteins during UV(254) and singlet oxygen mediated inactivation. Environ Sci Technol, 2010. 44(14): p. 5437-43.
  17. Hotze, E.M., et al., Mechanisms of bacteriophage inactivation via singlet oxygen generation in UV illuminated fullerol suspensions. Environ Sci Technol, 2009. 43(17): p. 6639-45.
  18. Wen, W.H., et al., Synergistic effect of zanamivir-porphyrin conjugates on inhibition of neuraminidase and inactivation of influenza virus. J Med Chem, 2009. 52(15): p. 4903-10.
  19. Tome, J.P., et al., Synthesis of neutral and cationic tripyridylporphyrin-D-galactose conjugates and the photoinactivation of HSV-1. Bioorg Med Chem, 2007. 15(14): p. 4705-13.
  20. Mohr, H., et al., Virus inactivation of blood products by phenothiazine dyes and light. Photochem Photobiol, 1997. 65(3): p. 441-5.
  21. Hirayama, J., et al., Involvement of reactive oxygen species in hemoglobin oxidation and virus inactivation by 1,9-dimethylmethylene blue phototreatment. Biol Pharm Bull, 2001. 24(4): p. 418-21.
  22. Lin, Y.L., et al., Light-independent inactivation of dengue-2 virus by carboxyfullerene C3 isomer. Virology, 2000. 275(2): p. 258-62.
  23. Pellieux, C., et al., Bactericidal and virucidal activities of singlet oxygen generated by thermolysis of naphthalene endoperoxides. Methods Enzymol, 2000. 319: p. 197-207.
  24. Stroop, W.G., et al., PCR assessment of HSV-1 corneal infection in animals treated with rose bengal and lissamine green B. Invest Ophthalmol Vis Sci, 2000. 41(8): p. 2096-102.
  25. Yip, L., et al., Antiviral activity of a derivative of the photosensitive compound Hypericin. Phytomedicine, 1996. 3(2): p. 185-90.
  26. Lenard, J., A. Rabson, and R. Vanderoef, Photodynamic inactivation of infectivity of human immunodeficiency virus and other enveloped viruses using hypericin and rose bengal: inhibition of fusion and syncytia formation. Proc Natl Acad Sci U S A, 1993. 90(1): p. 158-62.
  27. Neris, R.L.S., et al., Co-protoporphyrin IX and Sn-protoporphyrin IX inactivate Zika, Chikungunya and other arboviruses by targeting the viral envelope. Scientific Reports, 2018. 8.
  28. Randazzo, W., R. Aznar, and G. Sanchez, Curcumin-Mediated Photodynamic Inactivation of Norovirus Surrogates. Food Environ Virol, 2016. 8(4): p. 244-250.
  29. Latief, M.A., et al., Inactivation of acyclovir-sensitive and -resistant strains of herpes simplex virus type 1 in vitro by photodynamic antimicrobial chemotherapy. Mol Vis, 2015. 21: p. 532-7.
  30. Banerjee, I., et al., Light-activated nanotube-porphyrin conjugates as effective antiviral agents. Nanotechnology, 2012. 23(10).
  31. Lim, M.E., et al., Photodynamic inactivation of viruses using upconversion nanoparticles. Biomaterials, 2012. 33(6): p. 1912-1920.
  32. Yin, H.J., et al., Photoinactivation of cell-free human immunodeficiency virus by hematoporphyrin monomethyl ether. Lasers in Medical Science, 2012. 27(5): p. 943-950.
  33. Costa, L., et al., Evaluation of resistance development and viability recovery by a non-enveloped virus after repeated cycles of aPDT. Antiviral Research, 2011. 91(3): p. 278-282.
  34. Eickmann, M., et al., Inactivation of Ebola virus and Middle East respiratory syndrome coronavirus in platelet concentrates and plasma by ultraviolet C light and methylene blue plus visible light, respectively. Transfusion, 2018. 58(9): p. 2202-2207.

Wissenschaftliche Studien zur antibakteriellen Wirkung von Singulett Sauerstoff

  1. Nie, X., et al., Carbon quantum dots: A bright future as photosensitizers for in vitro antibacterial photodynamic inactivation. J Photochem Photobiol B, 2020. 206: p. 111864.
  2. Mlynarczyk, D.T., et al., Tribenzoporphyrazines with dendrimeric peripheral substituents and their promising photocytotoxic activity against Staphylococcus aureus. Journal of Photochemistry and Photobiology B-Biology, 2020. 204.
  3. Revuelta-Maza, M.A., et al., Fluorine-substituted tetracationic ABAB-phthalocyanines for efficient photodynamic inactivation of Gram-positive and Gram-negative bacteria. European Journal of Medicinal Chemistry, 2020. 187.
  4. Santos, D.D., et al., A novel technique of antimicrobial photodynamic therapy – aPDT using 1,9-dimethyl-methylene blue zinc chloride double salt-DMMB and polarized light on Staphylococcus aureus. Journal of Photochemistry and Photobiology B-Biology, 2019. 200.
  5. Ballatore, M.B., et al., Bacteriochlorin-bis(spermine) conjugate affords an effective photodynamic action to eradicate microorganisms. Journal of Biophotonics, 2020. 13(2).
  6. Yao, T.T., et al., A photodynamic antibacterial spray-coating based on the host-guest immobilization of the photosensitizer methylene blue. Journal of Materials Chemistry B, 2019. 7(33): p. 5089-5095.
  7. Chen, W.F., et al., Wool/Acrylic Blended Fabrics as Next-Generation Photodynamic Antimicrobial Materials. Acs Applied Materials & Interfaces, 2019. 11(33): p. 29557-29568.
  8. Heredia, D.A., et al., Antimicrobial Photodynamic Polymeric Films Bearing Biscarbazol Triphenylamine End-Capped Dendrimeric Zn(II) Porphyrin. Acs Applied Materials & Interfaces, 2019. 11(31): p. 27574-27587.
  9. Agazzi, M.L., et al., Light-Harvesting Antenna and Proton-Activated Photodynamic Effect of a Novel BODIPY-Fullerene C-60 Dyad as Potential Antimicrobial Agent. Chemphyschem, 2019. 20(9): p. 1110-1125.
  10. Huang, L.Y., et al., Comparison of two functionalized fullerenes for antimicrobial photodynamic inactivation: Potentiation by potassium iodide and photochemical mechanisms. Journal of Photochemistry and Photobiology B-Biology, 2018. 186: p. 197-206.
  11. Wang, J., et al., Visible light-induced biocidal activities and mechanistic study of neutral porphyrin derivatives against S-aureus and E. coli. Journal of Photochemistry and Photobiology B-Biology, 2018. 185: p. 199-205.
  12. Bresoli-Obach, R., et al., Triphenylphosphonium cation: A valuable functional group for antimicrobial photodynamic therapy. J Biophotonics, 2018. 11(10): p. e201800054.
  13. Cieplik, F., et al., Phenalen-1-one-Mediated Antimicrobial Photodynamic Therapy: Antimicrobial Efficacy in a Periodontal Biofilm Model and Flow Cytometric Evaluation of Cytoplasmic Membrane Damage. Front Microbiol, 2018. 9: p. 688.
  14. Li, C., et al., Self-Assembled Rose Bengal-Exopolysaccharide Nanoparticles for Improved Photodynamic Inactivation of Bacteria by Enhancing Singlet Oxygen Generation Directly in the Solution. ACS Appl Mater Interfaces, 2018. 10(19): p. 16715-16722.
  15. Hynek, J., et al., Designing Porphyrinic Covalent Organic Frameworks for the Photodynamic Inactivation of Bacteria. ACS Appl Mater Interfaces, 2018. 10(10): p. 8527-8535.
  16. de Annunzio, S.R., et al., Susceptibility of Enterococcus faecalis and Propionibacterium acnes to antimicrobial photodynamic therapy. J Photochem Photobiol B, 2018. 178: p. 545-550.
  17. Zhou, W., et al., High Antimicrobial Activity of Metal-Organic Framework-Templated Porphyrin Polymer Thin Films. ACS Appl Mater Interfaces, 2018. 10(2): p. 1528-1533.
  18. Huang, L.Y., et al., Potentiation by potassium iodide reveals that the anionic porphyrin TPPS4 is a surprisingly effective photosensitizer for antimicrobial photodynamic inactivation. Journal of Photochemistry and Photobiology B-Biology, 2018. 178: p. 277-286.
  19. Muller, A., A. Preuss, and B. Roder, Photodynamic inactivation of Escherichia coli – Correlation of singlet oxygen kinetics and phototoxicity. J Photochem Photobiol B, 2018. 178: p. 219-227.
  20. Eckl, D.B., et al., A Closer Look at Dark Toxicity of the Photosensitizer TMPyP in Bacteria. Photochemistry and Photobiology, 2018. 94(1): p. 165-172.
  21. Yoshida, A., et al., Antimicrobial effect of blue light using Porphyromonas gingivalis pigment. Scientific Reports, 2017. 7.
  22. Skwor, T.A., et al., Photodynamic inactivation of methicillin-resistant Staphylococcus aureus and Escherichia coli: A metalloporphyrin comparison. Journal of Photochemistry and Photobiology B-Biology, 2016. 165: p. 51-57.
  23. Ishiyama, K., et al., Bactericidal Action of Photodynamic Antimicrobial Chemotherapy (PACT) with Photosensitizers Used as Plaque-Disclosing Agents against Experimental Biofilm. Biocontrol Sci, 2016. 21(3): p. 187-91.
  24. Silva, Z.S., Jr., et al., Papain gel containing methylene blue for simultaneous caries removal and antimicrobial photoinactivation against Streptococcus mutans biofilms. Sci Rep, 2016. 6: p. 33270.
  25. Wu, J., et al., Photodynamic effect of curcumin on Vibrio parahaemolyticus. Photodiagnosis Photodyn Ther, 2016. 15: p. 34-9.
  26. Maraccini, P.A., J. Wenk, and A.B. Boehm, Photoinactivation of Eight Health-Relevant Bacterial Species: Determining the Importance of the Exogenous Indirect Mechanism. Environ Sci Technol, 2016. 50(10): p. 5050-9.
  27. Ruiz-Gonzalez, R., et al., A Comparative Study on Two Cationic Porphycenes: Photophysical and Antimicrobial Photoinactivation Evaluation. Int J Mol Sci, 2015. 16(11): p. 27072-86.

Wissenschaftliche Studien zur antifungalen Wirkung von Singulett Sauerstoff

  1. Mlynarczyk, D.T., et al., Tribenzoporphyrazines with dendrimeric peripheral substituents and their promising photocytotoxic activity against Staphylococcus aureus. Journal of Photochemistry and Photobiology BBiology, 2020. 204.
  2. Ballatore, M.B., et al., Bacteriochlorin-bis(spermine) conjugate affords an effective photodynamic action to eradicate microorganisms. Journal of Biophotonics, 2020. 13(2).
  3. Huang, L.Y., et al., Comparison of two functionalized fullerenes for antimicrobial photodynamic inactivation: Potentiation by potassium iodide and photochemical mechanisms. Journal of Photochemistry and Photobiology B-Biology, 2018. 186: p. 197-206.
  4. Huang, L.Y., et al., Potentiation by potassium iodide reveals that the anionic porphyrin TPPS4 is a surprisingly effective photosensitizer for antimicrobial photodynamic inactivation. Journal of Photochemistry and Photobiology B-Biology, 2018. 178: p. 277-286.
  5. Huang, L.Y., et al., Stable synthetic mono-substituted cationic bacteriochlorins mediate selective broadspectrum photoinactivation of drug-resistant pathogens at nanomolar concentrations. Journal of Photochemistry and Photobiology B-Biology, 2014. 141: p. 119-127.
  6. Vilsinski, B.H., et al., Formulation of Aluminum Chloride Phthalocyanine in Pluronic (TM) P-123 and F-127 Block Copolymer Micelles: Photophysical properties and Photodynamic Inactivation of Microorganisms. Photochemistry and Photobiology, 2015. 91(3): p. 518-525.
  7. Chibebe, J., et al., Selective photoinactivation of Candida albicans in the non-vertebrate host infection model Galleria mellonella. Bmc Microbiology, 2013. 13.
  8. Andreazza, N.L., et al., Photodynamic Inactivation of Yeast and Bacteria by Extracts of Alternanthera brasiliana. Current Drug Targets, 2013. 14(9): p. 1015-1022.
  9. Prates, R.A., et al., Effect of Virulence Factors on the Photodynamic Inactivation of Cryptococcus neoformans. Plos One, 2013. 8(1).
  10. Eichner, A., et al., Dirty hands: photodynamic killing of human pathogens like EHEC, MRSA and Candida within seconds. Photochemical & Photobiological Sciences, 2013. 12(1): p. 135-147.
  11. Teichert, M.C., et al., Treatment of oral candidiasis with methylene blue-mediated photodynamic therapy in an immunodeficient murine model. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2002. 93(2): p. 155-60.
  12. Huang, L.Y., et al., Progressive cationic functionalization of chlorin derivatives for antimicrobial photodynamic inactivation and related vancomycin conjugates. Photochemical & Photobiological Sciences, 2018. 17(5): p. 638-651.
  13. Alberdi, E. and C. Gomez, Successful treatment of Pityriasis Versicolor by photodynamic therapy mediated by methylene blue. Photodermatol Photoimmunol Photomed, 2020.
  14. Muller, A., et al., Electron beam functionalized photodynamic polyethersulfone membranes – photophysical characterization and antimicrobial activity. Photochem Photobiol Sci, 2018. 17(10): p. 1346-1354.
  15. Smijs, T.G.M., et al., Investigation of conditions involved in the susceptibility of the dermatophyte Trichophyton rubrum to photodynamic treatment. Journal of Antimicrobial Chemotherapy, 2007. 60(4): p. 750-759.
  16. Bornhutter, T., et al., Singlet oxygen luminescence kinetics under PDI relevant conditions of pathogenic dermatophytes and molds. J Photochem Photobiol B, 2018. 178: p. 606-613.
  17. Wen, X., et al., Potassium Iodide Potentiates Antimicrobial Photodynamic Inactivation Mediated by Rose Bengal in In Vitro and In Vivo Studies. Antimicrob Agents Chemother, 2017. 61(7).
  18. Vandresen, C.C., et al., In vitro photodynamic inactivation of conidia of the phytopathogenic fungus Colletotrichum graminicola with cationic porphyrins. Photochem Photobiol Sci, 2016. 15(5): p. 673-81.
  19. Preuss, A., et al., Photodynamic inactivation of biofilm building microorganisms by photoactive facade paints. J Photochem Photobiol B, 2016. 160: p. 79-85.
  20. Preuss, A., et al., Photodynamic inactivation of mold fungi spores by newly developed charged corroles. J Photochem Photobiol B, 2014. 133: p. 39-46.
  21. Lopez-Chicon, P., et al., On the mechanism of Candida spp. photoinactivation by hypericin. Photochem Photobiol Sci, 2012. 11(6): p. 1099-107.
  22. Gomes, M.C., et al., Photodynamic inactivation of Penicillium chrysogenum conidia by cationic porphyrins. Photochem Photobiol Sci, 2011. 10(11): p. 1735-43.
  23. Zerdin, K. and A.D. Scully, Inactivation of food-borne spoilage and pathogenic micro-organisms on the surface of a photoactive polymer. Photochem Photobiol, 2010. 86(5): p. 1109-17.
  24. Funes, M.D., et al., Photodynamic properties and photoantimicrobial action of electrochemically generated porphyrin polymeric films. Environ Sci Technol, 2009. 43(3): p. 902-8.
  25. Iwamoto, Y., et al., Singlet Oxygen Production and Photobiological Effects of Pinacyanol Chloride on Yeast Saccharomyces-Cerevisiae. Journal of Pharmacobio-Dynamics, 1990. 13(5): p. 316-320.
  26. Mothilal, K.K., et al., Synthesis, X-ray crystal structure, antimicrobial activity and photodynamic effects of some thiabendazole complexes. Journal of Inorganic Biochemistry, 2004. 98(2): p. 322-332.
  27. Bartusik, D., et al., Bacterial inactivation by a singlet oxygen bubbler: identifying factors controlling the toxicity of (1)O2 bubbles. Environ Sci Technol, 2012. 46(21): p. 12098-104.
  28. Uslan, C., et al., The synthesis and investigation of photochemical, photophysical and biological properties of new lutetium, indium, and zinc phthalocyanines substituted with PEGME-2000 blocks. J Biol Inorg Chem, 2019. 24(2): p. 191-210.
  29. Tan, J., et al., Inhibitory Effects of Photodynamic Inactivation on Planktonic Cells and Biofilms of Candida auris. Mycopathologia, 2019. 184(4): p. 525-531.

0 Comments